
1

CSE 3221.3 Operating System Fundamentals
Prof. Hui Jiang

Department of Computer Science and Engineering

York University

No. 10 Virtual Memory Background
• Memory-management methods requires the entire process to be in memory

before the process can execute.

• Better not to load the whole process in memory for execution:

– Programs often have code to handle unusual error conditions.

– Arrays, lists, and tables are often allocated more memory than they
actually need.

– Certain options and features of a program may be used rarely.

– Even all codes are needed, they may not all be needed at the same time.

• Our goal: partially load the program

– No longer be constrained by the amount of physical memory

– Each program takes less memory � CPU utilization and throughput up

– Less I/O to load program � run faster

• Overlay and dynamic loading can ease the restriction, but require extra work
by the programmer.Logical Memory Space (review)

Disk (20G)

Physical
Memory
(128M)

Virtual Memory: concepts
Virtual Memory

2

Virtual Memory
• Virtual memory can be implemented via:

– Demand paging

– Demand segmentation

• Hard since segments have variable size

Demand Paging(1)
• Demand paging:

– A paging system with page swapper

– A lazy swapper: never swap a page into memory unless the page will
be used.

• In demand paging:

– When a process is executed,

– The pager guess which pages are needed. (optional)

– The pager brings only these necessary pages into memory. (optional)

– When referring a page not in a memory, the pager bring it in as needed
and possibly replace an old page when no more free space.

• Hardware support: to distinguish those pages in memory and those pages
in disk

– Use valid-invalid bitAn example: Demand Paging
Disk

A

B

C

D

E

F

G

H

0

1

2

3

4

5

6

7

Virtual
Memory

4 v

i

6 v

i

i

9 v

i

i

0

1

2

3

4

5

6

7

page-
table

C

F

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

A

A B C

D E F

Physical memory

Handle a page fault

3

Handle a Page Fault
• Check an internal table to see if the reference was a valid or invalid

memory access.

• If invalid, terminate the process; If valid, this page is on disk. Need
page it into memory.

• Find a free frame from the free-frame list. (if no free frame, need
replace an old page)

• Schedule a disk operation to read the desired page into the newly
allocated frame.

• When the disk read is complete, modify the internal table and page
table to set the bit as valid to indicate this page is now in memory.

• Restart the instruction that was interrupted. The process can now
access the page as though it had always been in memory

The interrupt service routine to handle page fault in virtual memory:

Handle a Page Fault (more details)
• Trap to the OS

• Save the user registers and process state

• Determine the interrupt was a page fault

• Determine the location of the page on the disk

• Find a free frame from the free-frame list

– If no free frame, page replacement

• Issue a read from the disk to the free frame:

– Wait in a queue for the disk until serviced

– Wait for the disk seek and latency time

– Begin the transfer of the page to the free frame

• While waiting, allocate the CPU to other process (optional)

• Interrupt from the disk (I/O completed)

• Save the registers and process state for other running process(optional)

• Determine the interrupt was from the diskHandle a Page Fault (more details)(cont’d)
• …

• Correct the page table and other tables to show the desired page is
now in memory.

• Wake up the original waiting process.

• Wait for the CPU to be allocated to this process again.

• Restore the user registers and process state and new page table.

• Resume the interrupted instruction.

Pure Demand Paging
• Never bring a page into memory until it is referred.

• Start executing a process with no pages in memory

• OS set instruction pointer to the first instruction

• Once run, it causes a page fault to load the first page

• Faulting as necessary until every page is in memory

4

Some Architecture Concernsin demand paging
• Straightforward in most cases:

• But some instructions which may modify something are not easy to
handle:

– IBM 360/370: MVC (move 256 bytes)

– PDP-11: auto-decrement or auto-increment addressing mode

mov (R2)++, --(R3)

ADD A,B,C

1. Fetch and decode ADD

2. Fetch A

3. Fetch B

4. Add A and B

5. Store the sum to C

Performance of Demand Paging
• To service a page fault is very time-consuming:

– Service the page-fault interrupt

– Read in the page

– Restart the process

• Effective access time for a demand-paged system:

• One example: memory access 100 nanosecond

page fault 25 millisecond

• How to achieve low page fault rate??

Effective access time = (1-p) * ma + p * page fault time

Effective access time = 100 + 24,999,900 * p

If p=1/1000, EAT = 25 microsecond (slow down a factor of 250)
If requiring only 10% slow down, p<4/10000000 (one out of 2.5 million)Handling Swap Space on Disk

• For fast speed:

– Use swap space, not file system

– Swap space: in larger blocks, no file lookup and indirect allocation.

– Copying an entire file image into swap space at process startup and
then perform demand paging from the swap space.

– First load pages by file system, then write to swap space.

Copy-on-Write
• For quick process Creation: fork()

• Traditionally, fork() copies parent’s address space for the child.

• Copy-on-Write : without copying, the parent and child process initially
share the same pages, and these pages are marked as copy-on-write.

– If either process needs to write to a shared page, a copy of the
shared page is created and stop sharing this page.

• Advantages of copy-on-write:

– Quick process creation (no copying, just modify page table for
page sharing)

– Eventually, only modified pages are copied. All non-modified
pages are still shared by the parent and child processes.

• Better memory utilization

5

Copy-on-Write
Copy of C

Page Replacement(1)
• In demand paging, when increasing multiprogramming

level, it is possible to run out of all free frames .

• How about if a page fault occurs when no free fram es are
available

– Stop the process

– Swap out a process to free some frames

– Page replacement

• Replacing in page level

Page Replacement(2)
• If no frame is free, find one that is not currently being used and free it.

– Write the page into swap space and change page-tabl e to indicate
that this page is no longer in memory.

– Use the freed frame to hold the page for which the process faulted.

• Use a page-replacement algorithm to select a victim frame

• In this case, two disk accesses are required (one w rite one read).

• Use a modify bitmodify bit to reduce overhead:

– Each frame has a modify bit associated in hardware.

– Any write in page will set the bit by hardware

– In page replacement, if the bit is not set, no need to write back to
disk

• For read-only pages, always no need to write back

• With page replacement, we can run a large program i n a small memory.

• Page-replacement algorithm: how to select the frame to be replaced

• Frame-allocation algorithm: how many frames to allo cate to each
process

Page Replacement

6

Page-Replacement Algorithm
• To achieve the lowest page-fault rate

• Common schemes:

– Optimal page replacement

– FIFO page replacement

– LRU page replacement

– LRU approximation page replacement

• Additional-reference-bits algorithm

• Second-chance page-replacement algorithm

– Counting-based page replacement

– Page-buffering algorithm

• Evaluated with a reference string:

– e.g., 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

Optimal Page-Replacement
• An optimal page-replacement has the lowest page-fau lt rate

among all possible replacement algorithms.

• OPT: replace the page that will not be used for the longest
period of time.

• Guarantee the lowest page-fault rate

• Not feasible since future knowledge is required.

• Used for performance comparison of algorithms.

Reference String : 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
4-frame example:

1

2

3

4

6 page faults

4 5Optimal Page Replacement FIFO(first-in-first-out) Page-Replacement
• Always replace the oldest page in memory

• Implement FIFO queue to hold all pages in memory. R eplace the
page at the head. When a page is brought into memor y, it is
inserted at the tail of the queue.

• Simple and easy to implement.

• Performance is not always good.

– The replaced page may be a heavily used one � increasing page-fault rate

1

2

3

1

2

3

5

1

2

4

5 10 page faults

44 3

Reference String : 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5
4-frame example:

7

FIFO Page Replacement Least-recently-used (LRU)Page Replacement (1)
• Replace the page that has not been used for the lon gest period of

time

• LRU has to associate with each page the time of las t use.

• LRU chooses the oldest page based on the time stamp for
replacement.

• The performance of LRU is considered to be good.

• Example: 4-frame

– Reference String : 1, 2, 3, 4, 1, 2, 5, 1, 2, 3, 4, 5

1

2

3

5

4

4 3

5

8 page-faultsLRU Page Replacement LRU Page Replacement (2)
• LRU implementations

– Counters :

• CPU maintains a memory reference counter

• Add time-of-use in each entry in page-table

• Search the oldest page based on time-of-use

– Stack :

• Keep a stack of all page numbers.

• When one page is referenced, it is moved to the sta ck
top.

• The stack tail is always the LRU page.

• LRU implementation with hardware is very expensive.

• Few computers provide sufficient hardware for true LRU

8

LRU Approximation Replacement(1)
•• Reference bitReference bit:

– Initially cleared by OS

– set by the hardware whenever the page is referenced .

•• AdditionalAdditional--referencereference--bits algorithmbits algorithm:

– We gain additional ordering information by recordin g the
reference bits at regular intervals.

– Keep an 8-bit byte for each page in memory

– A timer interrupts at regular intervals (every 100 milliseconds)

– Shift all bits right 1 bit and discard the low-orde r bit

– OS copies the reference bit into the high-order bit and clear
reference bit

– Interpret the 8-bit byte as unsigned integer, the p age with the
lowest number is the LRU page.

LRU Approximation Replacement(2):Second-Chance Algorithm (clock)
• Based on FIFO policy, but check the reference bit o f the selected

page.
• If reference bit is 0, the page is replaced.
• If reference bit is set to 1, the page is given the second chance

– The reference bit is cleared.
– Its arrival time is reset to the current time.

• Second-chance (clock) algorithm can be implemented as a circular
queue:

pages

reference
bits 0 1 1 0 0 0Other Replacement Algorithms

• Counting-based page replacement

– Keep a counter of the number of references made to each page

– The least frequently used (LFU)least frequently used (LFU) page-replacement: replace the
page with the smallest count

– The most frequently used (MFU)most frequently used (MFU) page-replacement algorithm
(the page with small count was just brought in and has yet to be
used)

• Page-Buffering Algorithm:

– Keep a pool of free frames

– Select a victim frame, but the desired page is read into one free
frame in the pool without waiting for write-out. Th e victim is
written out later on and is added to free pool.

– Remember which page was in each frame of free pool. When a
page is needed, check if it is in the free pool.

Frame Allocation
• In single-user system, user process compete free fr ames with OS

• In multi-programming system, how to allocate the fi xed amount of
free memory among various processes??

• Minimum number of frames: a minimum number of frame s must be
allocated to the process (depending on instruction- set architecture)

• Allocation algorithms:

– Equal allocation: free frames are equally allocated to all
processes

– Proportional allocation: allocate available frames to each
process according to its size, its priority, or a co mbination.

• Global versus local allocation in replacement

– Global allocation: allow a process to select a replacement frame
from the set of all frames. (can take frames from o thers)

– Local allocation: require a process to select from only its own
set of allocated frames.

9

Example: proportional frame allocation
m

S

s
pa

m

sS

ps

i
ii

i

ii

×==

=
∑=

=

 for allocation

frames of number total

 process of size

5964
137
127

564
137
10

127

10

64

2

1

2

≈×=

≈×=

=
=
=

a

a

s

s

m

i

Thrashing
• Thrashing : a process is spending a significant time in paging.

• Thrashing results in severe performance problem. Th e process is
spending more time in paging than executing.

• Cause of thrashing:

– The process is not allocated enough frames to hold all the
pages currently in active use.

Locality Model of Programs
• A locality is a set of pages that are currently in an active use.

• A process moves from locality to locality.

• A program is generally composed of several differe nt localities.

• The localities are defined by the program structure and its data
structures .

• Locality model is the basic principle for caching a s well as
demand paging

– We only need a small number of frames to hold all pages in the
current locality in order to avoid further page faults.

Working-set Model
• The model define a working-set window, say ∆ page references,

e.g., 10,000 page references.

• The set of all referenced pages in the most recent ∆ page
references is the working set.

• How to choose the window ?

– if ∆∆∆∆ too small will not encompass entire locality.

– if ∆∆∆∆ too large will encompass several localities.

– if ∆∆∆∆ = ∞∞∞∞⇒ will encompass entire program.

• If WSSi = working-set size of process Pi � D = ΣΣΣΣ WSSi ≡≡≡≡ total demand frames

• if D > m (m: total available frames) ⇒ Thrashing

• Policy:

– CPU monitors working sets of all processes and allo cate
enough frames for the current working set.

– if D > m, then suspend one of the processes.

10

Working-Set Model Keeping Track of the Working Set
• Approximate with interval timer + a reference bit

• Example: ∆∆∆∆ = 10,000 references

– Timer interrupts after every 5000 references.

– Keep in memory 2 bits for each page.

– Whenever a timer interrupts copy and sets the value s of
all reference bits to 0.

– If one of the bits in memory = 1 ⇒ page in working set.

• The cost to service these frequent interrupts is hi gh.Page-Fault Frequency
• Establish “acceptable” page-fault rate.

– If actual rate too low, process loses frame.

– If actual rate too high, process gains frame.

Other Considerations in demand-paging
• Pre-paging:

– To prevent high page-fault rate at the beginning.

– Try to bring more pages at once.

• Page size: in powers of 2 (2**12 – 2*22)

– Small page size � large page-table

– Small page size � less internal fragmentation

– Small page size � more I/O overhead in paging

– Small page size � more page-faults

– Small page size � less I/O amount (better resolution)

less total allocated memory

– A historical trend is toward larger page sizes.

11

Other Considerations in demand-paging(cont’d)
• Program structure: a careful selection of data stru cture and

programming structure
– To increase locality and hence lower the page-fault rate.
– To reduce total number of memory access
– To reduce total number of pages touched.

• Also compiler and loader can improve.
• Example: Array A[1024][1024] of integer

– Each row is stored in one page
– Program 1 for j = 1 to 1024 do

for i = 1 to 1024 do
A[i][j] = 0;

1024 x 1024 page faults
– Program 2 for i = 1 to 1024 do

for j = 1 to 1024 do
A[i][j] = 0;

1024 page faults

